Принцип флотации. Флотация. Общая характеристика метода. Виды флотации и область применения. Флотаторы. Отчего зависит эффективность флотации для очистки воды

ФЛОТАЦИОННЫЕ ПРОЦЕССЫ ОБОГАЩЕНИЯ

ЛЕКЦИЯ № 10

Флотационные методы обогащения - это процессы разделения полезных ископаемых, основанные на различии физико-химических свойств поверхности разделяемых минералов.

Эти свойства проявляются в различной способности минералов закрепляться на границе раздела фаз.

Фазой называется часть разнородной системы, которая отделена от других частей видимой границей раздела и обладает одинаковыми химическими и термодинамическими свойствами.

Различная способность удерживаться на межфазовой поверхности определяется смачиваемостью частиц.

Известны вещества, хорошо смачиваемые водой. Они называются гидрофильными , что в переводе с греческого означает «любящие воду». Например, на стекле капля воды хорошо растекается по его поверхности.

И есть такие вещества, которые не смачиваются или плохо смачиваются водой, т.е. «бояться воды». Они называются гидрофобными . Например, самыми гидрофобными веществами являются парафин и тефлон, капля воды на них не растекается, а сохраняет округлую форму.

Поэтому, в другой формулировке:

Флотация – это метод обогащения полезных ископаемых в водной среде, который основан на различии в смачиваемости водой частиц разделяемых компонентов.

Среди гидрофобных веществ много и таких, которые хорошо смачиваются маслом, т.е. олеофильных .

У Геродота есть описание метода вылавливания золотых частиц гусиными перьями, смоченными жиром.

Этот процесс находит применение и в настоящее время, правда, не для извлечения золота, а выделения тонких частиц алмазов (олеофильных частиц).

Если через поверхность, обработанную жиром, пропустить пульпу с алмазоносным песком, то кристаллики алмазов, избирательно смачиваясь жировой поверхностью, прилипают к ней. Для того чтобы прилипание было более надежным, поверхность алмазов предварительно покрывают жировой пленкой. Это осуществляется просто – перемешивают немного жира с пульпой, содержащей измельченную руду. Жир (масло) избирательно прилипает только к олеофильным частицам алмаза, остальными минералы уносятся водой.

Второй этап развития метода – масляная флотация . Как и обогащение на липких поверхностях, метод основан на явлении смачивания, но с существенной особенностью – с избирательным всплыванием несмачиваемых средой минералов. Процесс прост – перемешивание измельченной руды, воды и масла в емкости. Частицы масла смачивают олеофильные частицы, собираются в крупные капли и всплывают на поверхность воды (не забываем, что масло легче воды). Верхний слой пульпы снимается, образуя концентрат. Частицы пустой породы (гидрофильные), не смоченные маслом, остаются в воде (отходы).


Масляная флотация имеет низкую производительность и большой расход масла, поэтому широкого применения не получила. Она может применяться при доводке концентратов редких металлов.

Наиболее распространена пенная флотация.

В принципе безразлично, в какой среде разделять минералы по смачиваемости, лишь бы они смачивались по-разному. Развитие техники обогащения привело к самому простому варианту, при котором смачиваемость водой частиц противопоставляется их взаимодействию с воздушным пузырьком, всплывающим в пульпе. Это и есть суть пенной флотации.

Образно говоря, если гидрофобные вещества «бояться» воды, то они «любят» воздух.

Другими словами, воздух способен вытеснить с гидрофобной поверхности водную пленку и, следовательно, закрепиться на ней.

Таким образом, если в пульпу, содержащую гидрофильные и гидрофобные частицы, добавить пузырьки воздуха, то получим картину, изображенную на рис. 10.1 (флотация – от англ. flotation – всплывание, удерживание на поверхности воды).

Таким образом, в процессе пенной флотации участвуют три фазы:

Твердая - полезное ископаемое (крупностью до 0,5 мм),

Жидкая – вода,

Газообразная – пузырьки воздуха.

Пульпа насыщается пузырьками воздуха, т.е. осуществляется аэрация пульпы. Воздух может засасываться из атмосферы и диспергироваться в пульпе специальными механическими аэраторами или в пульпу вдувается сжатый воздух.

Гидрофобные частицы закрепляются на пузырьках воздуха и выносятся ими на поверхность пульпы, образуя слой минерализованной пены - пенный продукт, как правило, это концентрат. Гидрофильные частицы остаются в пульпе и образуют камерные продукт – отходы (их часто называют «хвостами»).

У пенной флотации, есть существенный недостаток – это невозможность выделения в концентрат частиц крупнее 0,5 мм. Это связано с действующими на комплексы пузырек-частица гравитационными и гидродинамическими силами.

Для выделения более крупных частицы – от 0.5 до 3 мм разработана разновидность пенной флотации – пенная сепарация.

Принцип метода заключается в том, что в отличие от обычной флотации свежая пульпа подается не в подпенную зону, а непосредственно на толстый слой устойчивой пены, предварительно полученный, например, подачей воздуха через пористое дно аппарата.

Гидрофобные частицы задерживаются пеной и выгружаются с ней через порог пенного сепаратора. Так как поднимать из глубины машины частицы нет необходимости, повышается крупность извлекаемых гидрофобных частиц. Гидрофильные частицы, проходя через слой пены, осаждаются в нижнюю часть машины.

В настоящее время флотация – один из основных методов обогащения полезных ископаемых.

Они широко применяется для обогащения большинства руд цветных и редких металлов, апатитовых, фосфоритовых, баритовых, графитовых и других руд, полевошпатового сырья и угольных шламов.

Процесс также применяется для очистки воды от органических веществ (нефти, масел); бактерий; тонкодисперсных осадков солей и др.

Помимо горноперерабатывающих отраслей флотация используется в пищевой, химической и других отраслях для очистки промышленных стоков, ускорения отстаивания, выделения твердых взвесей и эмульгированных веществ и.т.п. Широкое применение флотации привело к появлению большого количества модификаций процесса по различным признакам.

ФЛОТАЦИЯ (французским flottation, английский flotation, букв. — плаванье на поверхности воды * а. flotation; н. Flotation, Flotatieren, Schaumschwimnaufereitung; ф. flottation; и. flotacion) — процесс разделения мелких твёрдых частиц (главным образом минералов) в водной суспензии (пульпе) или растворе, основанный на избирательной концентрации (адсорбции) частиц на границах раздела фаз в соответствии с их поверхностной активностью или смачиваемостью . Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз (обычно газа и воды) и отделяются от гидрофильных (хорошо смачиваемых водой) частиц.

Флотация — один из основных методов обогащения полезных ископаемых , применяется также для очистки воды от органических веществ ( , масел), бактерий, тонкодисперсных осадков солей и др. Помимо горноперерабатывающих отраслей промышленности флотация используется в пищевой, химической и других отраслях для очистки промышленных стоков, ускорения отстаивания , выделения твёрдых взвесей и эмульгирования веществ и т.п. Широкое применение флотации привело к появлению большого количества модификаций процесса по различным признакам (рис.).

Первой была предложена масляная флотация (В. Хайнс, Великобритания , 1860). Для её осуществления измельчённая руда перемешивается с маслом и водой; при этом сульфидные минералы избирательно смачиваются маслом, всплывают вместе с ним и снимаются с поверхности воды, а породы (кварц, полевые шпаты) тонут в воде. В России масляная флотация была использована для обогащения графитовой руды (г. Мариуполь, 1904). Позднее этот вид был усовершенствован: масло диспергировалось до эмульсионного состояния, что позволяло извлекать тонкие шламы, например марганцевых руд . Способность тонких гидрофобных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована для создания плёночной флотации (А. Нибелиус, США, 1892; А. Мак-Куистен, Великобритания, 1904). Плёночная флотация не имела большого практического использования, но явилась прообразом пенной флотации, как с точки зрения использования межфазной границы вода — воздух, так и с точки зрения использования флотационных реагентов , поскольку было замечено, что плёночная флотация проходит значительно эффективнее в присутствии небольших количеств масла. В процессе пенной флотации обработанные реагентами частицы выносятся на поверхность воды пузырьками воздуха, образуя пенный , устойчивость которого регулируется добавлением пенообразователей. Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) — вакуумная флотация, энергичное перемешивание (механическая флотации), пропускание воздуха сквозь мелкие отверстия (пневматическая флотация). Тонкодисперсные пузырьки для флотации из растворов получают также при электролитического разложении воды с образованием газообразного кислорода и водорода (электрофлотация).

Разнообразные способы образования газовых пузырьков и комбинации этих способов соответствуют различным типам флотационных машин . Соединение камер флотационных машин в определённой последовательности с направлением потоков пенных и камерных продуктов на перефлотацию, доизмельчение, перечистную или контрольную флотации составляет схему флотации, которая позволяет получить концентрат требуемого качества при заданном извлечении полезного компонента . Концентрат может быть получен пенным (прямая флотация) или камерным продуктом (обратная флотация); в последнем случае флотации подвергается пустая порода .

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1 мм в случае природно-гидрофобных неметаллических полезных ископаемых с небольшой плотностью ( , уголь, тальк) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) — аэрофлокул происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу.

На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура и плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1-0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мк ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1-3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5 -5 мм) в разработаны способы пенной сепарации , при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости.

Во флотационных машинах часто происходит побочный процесс — осаждение гидрофобных частиц на стенках и особенно деревянных деталях, т.н. флотации твёрдой стенкой. Этот эффект был положен в основу метода флотации тонких шлемов (-10 мкм) с помощью носителя — гидрофобных частиц флотационной крупности, селективно взаимодействующих с извлекаемыми шламами; образующиеся агрегаты подвергались обычной пенной флотации.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 50-х гг. был разработан метод ионной флотации .

Широкое распространение флотации, возникшей первоначально благодаря ряду эмпирических изобретений, оказало значительное влияние на становление физической химии поверхностных явлений, а развитая теория стала основой совершенствования процесса флотации.

В развитии теории флотации важную роль сыграли работы русских физико-химиков: И. С. Громека, впервые сформулировавшего в конце 19 века основные положения процесса смачивания; Л. Г. Гурвича, разработавшего в начале 20 века положения о гидрофобности и гидрофильности. П. А. Ребиндер развил теорию адсорбционных и поверхностно-активных процессов, указал на роль флокуляции в процессе флотации. Вопросы электрохимических взаимодействий при флотации впервые рассмотрел А. Н. Фрумкин (1930), а затем Р. Ш. Шафеев и В. А. Чантурия. Теория аэрации при флотации развита В. И. Классеном. Теория взаимодействия реагентов с минералами при флотации развита И. Н. Плаксиным и его школой (В. А. Глембоцкий, Классен, Шафеев, В. И. Тюрникова и др.), а также А. Таггартом , А. Годеном, Д. Фюрстенау (), И. Уорком (Австралия), М. Г. Флемингом (Великобритания) и др. Кинетике флотации, математическому моделированию и управлению процессом флотации посвящены работы К. Ф. Белоглазова, О. С. Богданова, Л. А. Барского, В. З. Козина, И. И. Максимова, Ю. Б. Рубинштейна, а также П. Инуэ (Япония), Фюрстенау (США) и др. Создание теории селективной флотации минералов связано с именами М. А. Эйгелеса, С. И. Митрофанова, С. И. Полькина и др.

Совершенствование процесса флотации идёт по пути синтеза новых видов флотационных реагентов, конструирования флотационных машин, замены воздуха другими газами (кислород, азот), а также внедрения систем управления параметрами жидкой фазы флотационной пульпы. Благодаря флотации вовлекаются в промышленное производство тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых.

Флотация руды представляет собой такую методику, которая позволяет сделать работу с полезными ископаемыми эффективнее и выгоднее. Разные элементы отличаются между собой способностью удерживаться на поверхности, где контактируют две фазы, то есть происходит раздел сред. Флотация - это процесс, который основан на удельной энергии поверхности.

Если говорить о частицах, то их можно разделить на следующие группы:

  • гидрофобные;
  • гидрофильные.

О гидрофобности…

Итак, метод флотации основан на том, что вода по-разному влияет на различные молекулы. О чем идет речь?

Под гидрофобными принято понимать такие молекулы, для которых вода относительно «безопасна», то есть смачиваются они из-за особенностей своей структуры очень плохо. Такие частицы сформированы таким образом, чтобы по возможности избегать контакта с водой.

В реальности подобное поведение можно наблюдать невооруженным глазом, если выйти утром из дома: роса или дождевые капли на листья деревьев и на траве формируют небольшие капли. При этом растения проявляют свою гидрофобность, не позволяя жидкости растекаться по поверхности. Что касается полезных руд, то тут сходная логика, но сопряженная с измельчением породы. Молекулы полезных веществ гидрофобны, и в ситуации, когда они оказываются в жидкой среде, происходит взаимодействие с газовыми молекулами, помогающее полезным ископаемым всплывать. Это сопряжено с природным стремлением к уменьшению энергии.

…и гидрофильности

Под гидрофильными принято понимать такие частицы, которые жидкостью могут быть смочены без особенного труда. Для этих веществ нет «дискомфорта» в ситуации, когда вещество оказалось в суспензии.

Если гидрофобные молекулы стремятся вступить в контакт с газами, у гидрофильных такой особенности не зафиксировано. Также гидрофильные соединения в своей основной массе не проявляют специфических свойств относительно масел, к которым так и «липнут» гидрофобные молекулы.

Метод флотации

Отличаются разные технологии границей раздела, создаваемой, чтобы компоненты отделялись друг от друга. Наиболее современные:

  • Масляная флотация - это такой вариант, когда смешивают предварительно измельченные руды с жидкостью, маслом. Это приводит к всплытию сульфидных соединений.
  • Пенная флотация - это технология, предполагающая измельчение руды, смешивание ее с водой, обработку полученного составом воздушными пузырьками. Этот процесс приводит к формированию пены на поверхности смеси. В ней будут находиться компоненты, которые нужно было выделить из породы. Специальной машиной пену отводят и высушивают.

Второй вариант требует измельчения исходной породы до частиц, диаметр которых не превышает 0,2 мм.

Это важно!

В современной промышленности высоко ценятся различные руды, далеко не все они отличаются гидрофобностью, а значит, описанная технология не будет работать для их извлечения. Тогда применяют химические составы - реагенты. Это такие компоненты, благодаря которым целевые частицы либо приобретают гидрофобные качества, либо теряют их.

Существуют следующие реагенты:

  • образователи пены;
  • регуляторы, повышающие гидрофильность;
  • собиратели;
  • активаторы, формирующие такие условия, в которых собиратели закрепляются на поверхности;
  • депрессоры, исключающие увеличение гидрофобности веществ (применяются для того, чтобы процесс стал более селективным).

Особенности работы

Флотация - это очень важный технологический процесс, который незаменим в промышленности, так как помогает обогащать руды с высокой результативностью. Эффективность показывает пенная технология, именно она и распространена в наши дни шире всего.

Чтобы начать флотацию, материалы сперва проходят через мельницу, что позволяет получить шихту, и уже после этого начинается процесс пенообразования. Чтобы флотация воды была результативной, выбирают такие размеры частиц, которые бы гарантировали разделение минералов. Оптимальный вариант - до 0,1 мм, но иногда измельчают и на компоненты размером всего 0,04 мм. Если в процессе окажутся более крупные компоненты, они снизят эффективность всей технологии в целом, так как имеют отрицательное действие. Также понижают эффективность процесса слишком мелкие составляющие, из-за которых элементы нормального размера не могут нормально взаимодействовать с воздушными пузырьками. Для улучшения качества необходимо использовать реагенты.

А как еще используем?

Обогащение руд - это не единственная область применения описанной технологии. В частности, широко распространена флотация сточных вод. Эта методика показала свою эффективность в ситуации, когда необходимо удалить из жидкости диспергированные компоненты, так как таковые нельзя убрать в процессе отстаивания.

Метод «пузырек-частица» показал высокую эффективность при выделении из воды следующих примесей:

  • продукты нефтяного производства;
  • нефть;
  • маслянистые вещества;
  • волокнистые компоненты.

Флотация - очистка сточных вод, в ходе которой все эти загрязняющие вещества просто всплывают на поверхность, что позволяет их быстро удалить вместе с образовавшейся пеной. Чтобы слой пены стал плотнее, а также для его разрушения допускается применять нагрев, а также использовать разработанные для этого приборы - «брызгалки».

Как это происходит

Очистка воды (флотации) происходят за счет способности частиц прилипать к пузырькам воздуха. Правда, это распространяется, как указано выше, только на гидрофобные компоненты. Чтобы сформировалась пара из воздушного пузыря и загрязняющей жидкость частицы, необходимо обеспечить их интенсивное взаимодействие. Это может быть обусловлено наличием реагента, создающего химически оптимальную среду для реакции. Также используется напорная флотация, когда создается избыточное давление в среде.

Флотация эффективна и в том случае, когда из жидкости следует удалить вещества, которые в ней уже растворились. Это касается в первую очередь поверхностно-активных веществ. Применяют в таком случае так называемую парную сепарацию. Здесь комплекс из веществ и газового пузыря образуется за счет реагента. Его надежность будет связана с природой загрязняющего компонента и его особенностями.

Ключевые преимущества

Флотация - очистка, имеющая ряд положительных параметров, что и стало причиной столь широкого распространения этой технологии в мире.

Основные аспекты:

  • обширность применимости;
  • непрерывность технологии;
  • невысокая стоимость;
  • простота эксплуатации;
  • применение в работе простых машин;
  • быстрота получения результата;
  • селективность;
  • не столь высокий уровень влажности шлама;
  • эффективность (до 98%);
  • выделяемые компоненты можно рекуперировать.

При флотации производится эффективная аэрация, понижается процентное соотношение жидкости и ПАВ, а также уменьшается количество микроскопических организмов, бактерий. Сточные воды, прошедшие флотацию, могут подаваться на очистительные установки более высокого уровня.

Разновидности технологии

Различные методики друг от друга отличаются в первую очередь по насыщаемости жидкости газами. Принято говорить о:

  • выделении из раствора воздуха;
  • диспергировании при применении механического воздействия;
  • применении пористых материалов для подачи воздушного потока;
  • химической технологии;
  • биологической флотации;
  • использовании электричества.

Установки, при помощи которых осуществляется флотация ПАВ и других примесей в жидкостях, бывают двухкамерные или однокамерные. Если камера только одна, то в ней жидкость наполняется газами и здесь же из нее выделяют загрязняющие компоненты. При наличии двух камер в одной происходит контакт с воздушным потоком, а в другом смесь может отстаиваться, во время чего шлам всплывает, а жидкость осветляется.

Флотация в медицине

Говоря об этой незаменимой методике выделения примесей из основного вещества, просто нельзя не упомянуть использование ее в медицине. Наиболее актуальна флотация кала для выявления наличия в органическом веществе гельминтов. Эта методика позволяет делать выводы о содержании:

  • ооцист;
  • цист.

Результаты оказываются достаточно точными только в том случае, когда ко врачам попадают свежие выделения. Чтобы удалось корректно и точно проанализировать вещество на наличие гельминтов, нужно хранить органическое вещество в холодильнике не более 72 часов. В некоторых случаях получается так, что образцы уже получены, а взять новые возможности нет, но изучение следует отложить на период, превышающий 72 часа. Выход есть: применяют 10% формалин. Этот раствор будет играть роль буфера. Если органические вещества были законсервированы таким образом, они могут далее использоваться в ходе исследований концентрации.

Технологии и точность

Флотация дает возможность выявить бактерии, стойкие к воздействию кислот, а также провести иммунологический анализ. Наиболее простой и легкий в реализации способ - это гравитационная флотация, также известная как стоячая. Он требует относительно мало времени на свою реализацию.

Альтернативный вариант - использование медицинских центрифуг. Этот метод более чувствителен, его результаты точнее ориентировочно в восемь раз. Если органические выделения пациента содержат небольшой процент гельминтов, гравитационный метод может показать их отсутствие, но этот результат окажется ложным. Чтобы быть уверенным в точности итогов, следует применять центрифуги.

Важные аспекты

Флотация - это такая методика выявления гельминтов, которой свойственны некоторые ограничения. О чем идет речь? К примеру, если предполагается, что в кале содержатся тяжелые яйца, их таким способом обнаружить вряд ли удастся. Это обусловлено тем, что они просто не могут всплыть из-за своего размера и массы. Кроме того, флотация не показывает достаточного эффекта на ларвальной стадии.

Планируя исследование, врачи должны помнить о том, что флотационная среда оказывает прямое влияние на точность результата. Наиболее значимые параметры:

  • удельный вес;
  • тип вещества.

Многие исследователи сходятся на том, что наилучшие результаты показывает сульфат цинка. Для этого соединения удельный вес варьируется в границах 1,18-1,2. Такой раствор даст возможность с высоким уровнем точности выявить цисты, яйца, а также поддержать структурные элементы цист.

Центрифуга: как это происходит

Рабочий процесс врача, изучающего кал на предмет наличия в нем гельминтов при помощи специальной установки, выглядит следующим образом:

  • готовится эмульсия, в которой на 30 мл раствора приходится 5 г испражнений;
  • эмульсия фильтруется через марлю в пробирку;
  • пробирка заполняется флотационной средой, пока мениска не станет положительной;
  • пробирка помещается на стекло, балансируется в установке;
  • центрифуга запускается на 10 минут на скорость до 15 тысяч оборотов в минуту.

По завершении этого процесса доктор получает покровное стекло (его необходимо доставать вертикально), которое можно изучить под микроскопом. Исследование проводится около 10 минут - начинают с десятикратного увеличения, увеличивая его затем в четыре раза. Это дает возможность с точностью говорить о наличии микроскопических организмов, а также делать выводы об их структурах и о том, какого размера есть вредные организмы и их частицы.

Нововведения

Методики не стоят на месте, и применяемая в медицине флотация в последнее время также была усовершенствована. В частности, удалось разработать такую центрифугу, которая оснащена угловым ротором. В этой установке контейнеры не колеблются свободно, последнее вращение не сопровождается наложением на покровное стекло.

При завершающем этапе обработки смеси в установке пробирку нужно поставить вертикально в специальный штатив, затем долить в нее раствор, сохраняя верхний слой в целости. Когда мениска становится положительной, устанавливают покровное стекло и оставляют стоять пробирку не более пяти минут. Далее стекло убирают и изучают его под микроскопом также под двумя мощностями увеличения.

Очистка сточных вод, в первую очередь, включает в себя этап прохождения отстойника как в локальных очистных сооружения, так и в общегородских. Отставание воды очищает воду только от крупных взвесей, которые осаждаются на дно, являясь тяжелее воды. Но как быть с теми частицами, которые легче воды и не подвержены осаждению? Существует метод для выделения и таких сложных загрязнителей, который называют флотацией.

Флотационная очистка применяется как одна из ступеней очистки сточных вод от таких примесей.

Подробнее о флотации

Флотация — это один из способов, применяемых для очистки сточных вод. Буквально слово «флотация» (англ. flotation) переводится как «плаванье на поверхности воды» , поэтому и напоминает слово флот. Но если говорить об очистке флотацией, то ее целью является вывести на поверхность различные взвеси и другие вещества, которые имеют плотность близкую воде и не способны оседать.

В толще воды плавают различные мелкие твердые частицы, коллоидные взвеси и другие примеси, которые не оседают. Флотацию применяют для очищения сточных вод от ПАВ, нефтепродуктов, жиров, волокнистых веществ и взвесей активного ила. Также флотационный процесс по типу пенной сепарации способен удалить некоторые растворенные в воде вещества.

Физико-химические законы флотации

В основу флотационной очистки заложены сложные физико-химические процессы. Главным образом рассматривается понятие смачиваемости, то есть индивидуальной способности тех или иных веществ к смачиванию. Эта способность напрямую определяет поведение этих соединений на границе раздела фаз жидкости и газа. Существует два типа веществ:

  • Гидрофильные — характеризуются хорошей способностью к смачиванию;
  • Гидрофобные – несмачиваемые.

В зависимости от того, к какому типу относится то или иное вещество, оно хорошо убирается при помощи флотационной очистки или же, наоборот, не поддается выделению таким способом.

Этапы флотации

Процесс флотации несложен для понимания, его можно описать следующим образом:

В итоге на поверхности воды образуется пенная субстанция. Полученную пену удаляют специальным приспособлением — это конечный продукт флотации или шлам.

Эффективность процесса флотации

Те или иные факторы могут понижать или повышать эффективность флотации, как способа очистки сточных вод. Наиболее значимое влияние оказывают приведенные ниже факторы:

На эти факторы можно оказать воздействие с помощью специальных реагентов , которые будут описаны далее.

Реагенты для улучшения флотации

Как описано выше, флотация зависит от качества пенообразования и гидрофобности частиц. Существуют специальные добавки, которые направлены на повышение качества пены и увеличения гидрофобности примесей. Реагенты можно разделить на две основные группы:

  • Собиратели;
  • Пенообразователи.

Реагенты собиратели

Наиболее часто встречаемый вид загрязнителей имеет в своем составе частицы с двоякими качествами, имеющими часть гидрофобных и часть гидрофильных групп. Их способность смачивания недостаточна для связывания с пузырьками воздуха, поэтому флотация малоэффективна. Чтобы решить эту проблему, в стоки добавляют так называемые добавки-собиратели, которые также имеют двоякую структуру, состоящую из гидрофильных (полярных) и гидрофобных (неполярных) групп. Полярные гидрофильные концы загрязнителя и собирателя слепляются между собой, а гидрофобные концы остаются свободными.

Собирателями для усиления флотации выступают поверхностно-активные вещества:

  • Аммонийные соли;
  • Нефтепродукты;
  • Масла;
  • Меркаптан

Реагенты пенообразователи

Качество пени играет одну из ключевых ролей в эффективности флотации. Существует группа добавок, которые направлены на улучшение пенообразования. Они предохраняют пузыри воздуха от разрушения, делая их упругими и значительно стабилизируя пенную массу. Это дает возможность удалить как можно больше загрязнителей из сточных вод. Такими стабилизаторами для пены являются:

  • Масло сосны;
  • Крезол;
  • Фенолы и много других веществ

Виды флотационной очистки стоков

Процесс флотации кратко описан как насыщение сточных вод воздухом с его диспергированием. То есть главная задача флотации заключается в получении пузырьков нужного диаметра в толщах сточных вод. Как именно это осуществляется описано ниже.

Выделение пузырьков воздуха из раствора

Чтобы выделить воздушные пузырьки из раствора, используют напорную и вакуумную флотацию . Напорная флотация представляет собой нагнетание воздуха, а затем резкое снижение давления в системе, что провоцирует выделение пузырьковой массы в толще воды.

Вакуумная флотация несколько схожа с напорной, но ее реализуют иначе. Первым этапом является прохождение воды через камеру аэрации, где она насыщается воздухом. После этого она поступает в дизаэратор, где удаляется нерастворенный воздух. Последним этапом является прохождение камеры флотации, в которой давление понижается, что вызывает бурное образование пузырьков.

Такими способами весьма успешно удаляются мелкодисперсные примеси .

Пропускание воздуха через пористые материалы

Это один из простейших способов с точки зрения физики для получения диспергированного воздушного потока. Перед попаданием воздуха в сточные воды, его пропускают через материалы с порами, такие как пластины со сквозными щелями. Диаметр пузырьков регулируется размером данных пор.

Электролизная флотация

Этот способ воплощают помещением в воду двух электродов, через которые пускают ток. Во время электролиза вода вокруг электродов расщепляется на пузырьки водорода и кислорода. Наиболее часто используемый материал для электродов: алюминий и железо. Эти металлы выделяют в воду коагулянты, которые связывают взвеси и превращают их в подобие хлопьев . Эти хлопья соединяются с воздушными пузырьками и выходят на поверхность сточных вод в вид пены.

Механическое диспергирование

Кроме образования пузырьков воздуха в воде при помощи смены давления, также применяют механические способы. Для этого также существует несколько путей:

Пузырьки в этих трех способах образуются в результате вихревого процесса, который стимулируется перемешиванием.

Флотация – преимущества и недостатки способа

На сегодня флотация является одним из наиболее часто используемых приемов очистки стоков. Его применяют и промышленные очистительные сооружения и городские. Причиной этому служит целый ряд факторов, которые говорят в пользу флотации.

Преимущества флотационной очистки:

Безусловно, как и любой метод, флотация связана и с некоторыми отрицательными моментами.

Недостатки флотационной очистки:

  1. Она удаляет далеко не все загрязнители, поскольку ее эффективность зависит от гидрофобности вещества;
  2. Часто приходится нести дополнительные затраты на внесение реагентов, которые улучшают качество пены и усиливают гидрофобность загрязнителей;
  3. К каждому виду загрязнителя нужен свой подходи, а, значит, нет универсального метода для удаления всех взвесей.

Выводы о флотации

Сколько бы преимуществ ни имела флотация, она не является самостоятельной и окончательной очисткой сточных вод. Это лишь один из этапов сложнейшего процесса, который позволяет удалить из воды большую часть нежелательных веществ. Флотационная очистка позволяет избавить воду от нефтепродуктов и масел, которые невозможно удалить другими способами, а также волокнистые составляющие стоков. Обычно флотационную очистку используют после этапа отстойников, чтобы удалить те вещества, которые не подвержены осаждению.

Использование: обогащение полезных ископаемых, флотация руд. Сущность изобретения: в колонной флотационной машине с вертикально расположенной зоной минерализации исходную пульпу подают в зону минерализации нисходящим потоком. Одновременно подают в нее аэрирующий воздух. Разделяют пенный и камерный продукты. Подачу исходной пульпы производят с расходом, обеспечивающим в зоне минерализации приведенную скорость нисходящего потока пульпы в пределах 0,2 - 0,5 м/с. Удельный расход аэрирующего воздуха при этом поддерживают в пределах 0,1 - 0,5. 2 ил.

Изобретение относится к области обогащения полезных ископаемых способом флотации в колонных флотационных машинах и может быть использовано при переработке рудного и нерудного сырья, а также при очистке сточных вод. Известен способ флотации, осуществляемый в колоннах пневматических флотационных машин с вертикально расположенной зоной минерализации, в которую подают исходную пульпу восходящим потоком с одновременной подачей в этот поток аэрирующего воздуха. При этом расход исходной пульпы поддерживают на такой величине, чтобы ее приведенная скорость в зоне минерализации не превышала скорости всплытия пузырьков аэрирующего воздуха. Такое соотношение скоростей указанных технологических сред приводит к образованию в зоне минерализации восходящего прямоточного пульповоздушного потока, в котором скорость всплытия пузырьков возрастает из-за наложения скорости восходящего потока пульпы. Процесс разделения пенного и камерного продуктов идет в условиях прямотока пульповоздушной смеси, в которой скорость движения восходящего потока пузырьков воздуха выше скорости движения восходящего потока твердых частиц (авт. св. СССР N 1351684, кл. B 03 D 1/24, опубл. БИ N 42, 1985). Известный способ флотации имеет следующие недостатки: 1. Из-за повышенной скорости всплытия пузырьков снижается время их пребывания в зоне минерализации (оно составляет примерно 4 8 с для промышленных машин, работающих на основе известного способа), поэтому происходит недогруз пузырьков, то есть снижается степень их минерализации, приводящая к снижению удельной производительности способа. 2. Повышенная скорость всплытия пузырьков требует повышенного удельного расхода аэрирующего воздуха для поддержания необходимого газосодержания, что требует повышения энергозатрат на аэрацию. 3. Из-за повышения скорости всплытия пузырьков и высокого удельного расхода аэрирующего воздуха усиливаются крупномасштабные вихревые движения флотационной системы и возникает значительное продольное перемешивание, приводящее к увеличению неравномерности пульповоздушного потока. Указанные факторы препятствуют повышению удельной производительности способа. 4. Сниженная вероятность прикрепления твердых частиц к пузырькам воздуха из-за их высокой относительной скорости также приводит к снижению удельной производительности способа. Широко известен способ флотации, осуществляемый в колонных пневматических флотационных машинах с вертикально расположенной зоной минерализации, в которую непрерывно нисходящим потоком подают исходную пульпу с одновременной встречной подачей аэрирующего воздуха восходящим потоком и ведут процесс разделения пенного и камерного продуктов в условиях противотока пульпы и газовой фазы. Для поддержания оптимального газосодержания пульпы, которое в известном способе составляет менее 0,3 подачу исходной пульпы осуществляют с расходом, обеспечивающим приведенную скорость нисходящего потока пульпы (по отношению к сечению зоны минерализации) в пределах 0,01 0,03 м/с, то есть меньшую, чем скорость всплытия пузырьков. Удельный расход аэрирующего воздуха при этом задают в пределах 1,0 2,5. При указанных соотношениях расходов пульпы и воздуха относительная скорость встречного движения частиц и пузырьков воздуха в противотоке составляет примерно 0,12 м/с (Рубинштейн Ю.Б. Противоточные пневматические флотационные машины. М. Цветметинформация, 1979, с. 19, 21-25). Известный способ флотации имеет следующие недостатки: 1. Повышенный удельный расход аэрирующего воздуха по отношению к расходу исходного питания приводит к образованию крупномасштабных вихревых движений флотационной системы и, как следствие, к значительному продольному перемешиванию, что ухудшает условия флотации, то есть приводит в свою очередь к снижению вероятности сохранения флотокомплексов. Коэффициент же продольного перемешивания зависит от интенсивности вихревых движений, которая возрастает с увеличением расхода воздуха и поэтому не позволяет достичь максимального (0,3) газосодержания флотационной системы и, следовательно, ограничивает удельную производительность известного способа. 2. В восходящем потоке пузырьков аэрирующего воздуха при его отмеченном значительном удельном расходе активизируется процесс коалесценции слияния и укрупнения пузырьков, что приводит к сокращению их суммарной поверхности контакта и к неравномерности их распределения по сечению зоны минерализации и, как следствие, к снижению удельной производительности способа. 3. Повышенный удельный расход аэрирующего воздуха повышает энергоемкость известного способа. 4. Сравнительно высокая относительная скорость противонаправленного движения частиц и пузырьков воздуха снижает вероятность прикрепления частиц к пузырьку, то есть условия флотации ухудшаются и удельная производительность снижается. 5. Малое время пребывания пузырьков воздуха в зоне минерализации, составляющее 4 8 с, также ограничивает удельную производительность известного способа. Цель изобретения повышение удельной производительность и снижение энергозатрат на аэрацию. Сущность изобретения заключается в том, что в способе флотации, осуществляемом в колонных флотационных машинах с вертикально расположенной зоной минерализации и включающем в себя подачу исходной пульпы в зону минерализации нисходящим потоком с одновременной подачей в нее аэрирующего воздуха, разделение пенного и камерного продуктов, согласно изобретению подачу исходной пульпы производят с расходом, обеспечивающим в зоне минерализации приведенную скорость нисходящего потока пульпы в пределах 0,2 0,5 м/с, а удельный расход аэрирующего воздуха при этом поддерживают в пределах 0,1 0,5 по отношению к расходу исходной пульпы. Техническим результатом предполагаемого изобретения является увеличение времени пребывания пузырьков воздуха в зоне минерализации по сравнению с известным способом почти на порядок. В зависимости от заданного соотношения расходов пульпы и аэрирующего воздуха время пребывания пузырьков воздуха в пульпе согласно способу составляет 20 60 с, что обеспечивает значительное повышение его удельной производительности за счет полной загрузки пузырьков. На фиг. 1 схематически показана часть зоны минерализации, заключенной в колонне, и часть горизонтального участка зоны разделения; на фиг. 2 график зависимости извлечения и удельной производительности q от приведенной скорости пульпы U ж.пр. при удельном расходе аэрирующего воздуха, составляющем 0,05, 0,1, 0,3, 0,5, 0,6, 0,7. Согласно предложенному способу флотации в вертикально расположенную зону минерализации, ограниченную вертикальными стенками 1 колонны, непрерывно подают исходную пульпу нисходящим потоком. При этом расход исходной пульпы задают таким, чтобы в зоне минерализации обеспечивалась приведенная скорость нисходящего потока пульпы в пределах 0,2 0,5 м/с. Аэрирующий воздух подают одновременно в верхнюю часть зоны минерализации в виде воздушных пузырьков 2 необходимого диаметра. Удельный расход аэрирующего воздуха поддерживают в пределах 0,1 0,5 по отношению к расходу исходной пульпы. Указанный диапазон изменения удельного расхода воздуха обеспечивает в нисходящем потоке пульпы оптимальную величину среднего газосодержания порядка 0,2 0,3. Так как приведенная скорость нисходящего потока пульпы в указанных пределах превышает скорость всплытия ненагруженных пузырьков 2, составляющую примерно 0,1 0,23 м/с, то пузырьки 2, увлекаемые нисходящим потоком пульпы, перемещаются ею из верхней части зоны минерализации в ее нижнюю часть. При этом время пребывания пузырьков 2 в зоне минерализации составляет 20-60 с, а время пребывания минеральных частиц 3 пульпы составляет меньшую величину, так как они имеют несколько большую скорость опускания чем пузырьки 2. Таким образом в зоне минерализации образуется нисходящий пульповоздушный поток, в котором составляющие его компоненты жидкость, минеральные частицы 3 пульпы и воздушные пузырьки 2 движутся в одном направлении вниз, то есть процесс флотации происходит в режиме движения пульпы, максимально приближенному к режиму "идеального вытеснения". Известно, что оптимальные условия слипания пузырьков воздуха и минеральных частиц наступают через 5-15 с после образования пузырьков, поэтому в течение времени пребывания в зоне минерализации, составляющем 20 60 с, пузырьки 2 получают полную минеральную нагрузку. При этом те воздушные пузырьки, которые быстрее получили полную минеральную нагрузку, быстрее и транспортируются вниз к зоне 4 разделения. Пузырьки 2, имеющие меньшую минеральную нагрузку, опускаются медленнее, то есть их время пребывания в зоне минерализации увеличивается, что позволяет этим пузырькам 2 также получить полную нагрузку. В нижней части зоны минерализации создают условия для разделения пенного и камерного продуктов известным путем, например путем изменения направления движения нисходящего потока флотационной системы на горизонтальное. Флотокомплексы в виде пенного продукта всплывают на горизонтальном участке зоны 4 разделения и скапливаются на ее верхнем уровне, откуда пенный продукт под действием гидростатического столба пульпы быстро разгружается для дальнейшего передела. Несфлотировавшийся материал (камерный продукт) также активно выгружается вместе с отработанной жидкостью. Из графика, построенного на основе экспериментальных данных (фиг. 2), следует, что уменьшать приведенную скорость пульпы до величины, меньшей чем 0,2 м/с, нецелесообразно, так как при этом значительно уменьшается удельная производительность способа из-за резкого увеличения газосодержания выше нормативного, то есть выше 0,3. При увеличении приведенной скорости более 0,5 м/с происходит падение извлечения вследствие сокращения времени пребывания пульпы в зоне минерализации. Снижение удельного расхода аэрирующего воздуха ниже 0,1 приводит к снижению извлечения на всем диапазоне изменения приведенной скорости пульпы, а повышение удельного расхода воздуха выше предельного по способу, то есть выше 0,5, не позволяет вести процесс флотации на оптимальных расходах исходной пульпы, так как при этом резко снижается извлечение. Таким образом, предложенный способ позволяет значительно увеличить удельную производительность за счет увеличения почти на порядок времени пребывания воздушных пузырьков 2 в зоне минерализации при поддержании повышенных расходов исходной пульпы и малых расходах аэрирующего воздуха, снижающих энергозатраты.

Формула изобретения

Способ флотации, осуществляемый в колонных флотационных машинах с вертикально расположенной зоной минерализации и включающий в себя подачу исходной пульпы в зону минерализации нисходящим потоком с одновременной подачей в нее аэрирующего воздуха, разделение пенного и камерного продуктов, отличающийся тем, что подачу исходной пульпы производят с расходом, обеспечивающим в зоне минерализации приведенную скорость нисходящего потока пульпы в пределах 0,2 0,5 м/с, а удельный расход аэрирующего воздуха при этом поддерживают в пределах 0,1 0,5.

Похожие патенты:

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке как сульфидных полиметаллических золотосодержащих руд, так и при доизвлечении золота, серебра и цветных металлов из складируемых отходов горно-обогатительных полиметаллических комбинатов

Изобретение относится к процессам извлечения мелкодисперсных частиц металлов из производственных растворов, в частности, может быть использовано для извлечения коллоидного золота и других металлов, гидрозоли которых имеют отрицательный заряд

Похожие публикации